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Structural magnetic resonance imaging (MRI) features have played an increasingly crucial

role in discriminating patients with Alzheimer’s disease (AD) andmild cognitive impairment

(MCI) from normal controls (NC). However, the large number of structural MRI studies only

extracted low-level neuroimaging features or simply concatenated multitudinous features

while ignoring the interregional covariate information. The appropriate representation

and integration of multilevel features will be preferable for the precise discrimination

in the progression of AD. In this study, we proposed a novel inter-coupled feature

representation method and built an integration model considering the two-level (the

regions of interest (ROI) level and the network level) coupled features based on structural

MRI data. For the intra-coupled interactions about the network-level features, we

performed the ROI-level (intra- and inter-) coupled interaction within each network

by feature expansion and coupling learning. For the inter-coupled interaction of the

network-level features, we measured the coupled relationships among different networks

via Canonical correlation analysis. We evaluated the classification performance using

coupled feature representations on the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database. Results showed that the coupled integration model with hierarchical

features achieved the optimal classification performance with an accuracy of 90.44%

for AD and NC groups, with an accuracy of 87.72% for the MCI converter (MCI-c)

and MCI non-converter (MCI-nc) groups. These findings suggested that our two-level

coupled interaction representation of hierarchical features has been the effective means

for the precise discrimination of MCI-c from MCI-nc groups and, therefore, helpful in the

characterization of different AD courses.

Keywords: coupled interaction representation, hierarchical features, classification, mild cognitive impairment,

Alzheimer’s disease, structural MRI
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INTRODUCTION

Alzheimer’s disease (AD) is one of the most severe
neurodegenerative dementias in the elderly, and mild cognitive
impairment (MCI) is a prodromal stage with a higher risk of
progression to AD in patients with MCI than normal controls
(NC) (Dona et al., 2016; Arbabshirani et al., 2017; Zhang et al.,
2021a). Neuroimaging techniques provide objective and effective
tools to study the human brain and have been widely used in
the diagnosis of AD or MCI from NC. Neuroimaging studies
have shown remarkable structural and functional alterations in
the human brain during the course of AD (Vemuri and Jack,
2010; Rathore et al., 2017; Leandrou et al., 2018). Structural
magnetic resonance imaging (MRI) studies have extracted
hierarchical features [the voxel level, the regions of interest
(ROI) level, or the network level] as explicit variables to
discriminate AD and MCI from NC. However, a large number
of structural MRI studies only extracted low-level features, or
simply concatenated multitudinous features, while ignoring the
interregional covariate information among features (Anstey and
Maller, 2003; Yang et al., 2011; Moradi et al., 2015; Hu et al.,
2016; Rathore et al., 2017; Rondina et al., 2018), so they cannot
fully exploit the latent and complex information integrated with
hierarchical features. The effective feature representations help
to enhance the performance of classification. Therefore, the
appropriate representation and integration of multilevel features
will be preferable for the precise discrimination of AD, MCI,
and NC.

Based on structural MRI data, researchers extracted
hierarchical imaging features, such as the gray matter (GM)
density as the voxel-level features (Moradi et al., 2015; Zeifman
et al., 2015), the average gray matter volume (GMV) of brain
regions as the ROI-level features (Shi et al., 2014; Hu et al.,
2016), or the independent components (ICs) from independent
component analysis (ICA) as brain network-level features
(Yang et al., 2011). Moradi et al. considered the smoothed
GM density from structural MRI data as voxel-level features
for AD conversion prediction in subjects with MCI (Moradi
et al., 2015). In comparison with the voxel-level features with
redundant information but expensive computation, ROI-level
features significantly reduce the dimensionality of brain imaging
data by uniting the structural adjacent voxels. The GMV from
different ROIs has been applied as an independent variable to
investigate the predictive power for distinguishing AD with
MCI (Zhang et al., 2011) and classifying AD from NC (Rondina
et al., 2018). ICA is a data-driven approach that decomposes
the whole-brain voxel-vise information into a few maximally
independent components based on inter-regional covariance
relationships. The brain GM networks obtained from ICA have
been considered as brain network-level features to differentiate
individuals with AD and NCs, thus providing new avenues for
the network-level features in AD classification (Yang et al., 2011;
Wei et al., 2016). However, it has been noted that ROI-level
features in the same network exhibited more complicated
regional dependencies than those in different brain networks
(Liu et al., 2017a; Rathore et al., 2017; Filippi et al., 2020; Feng
et al., 2021). Nevertheless, the aforementioned studies mostly

constructed classificationmodels using the single level of features
separately while neglecting the complex interaction relationships
among multilevel features.

There were explicit and hidden coupled interactions, much
more abundant than simple linear correlation among attributes
or features of objects in many domains, like the recommender
systems (Wang and Cao, 2020; Zhang et al., 2021b), outlier
detection (Pang et al., 2016), and pieces of neuroscience research
(Shi et al., 2014, 2015, 2020). Many coupled analysis models
were proposed to analyze the explicit and hidden couplings and
revealed the non-independent and identical distribution (non-
IIDness) characteristics for different data types (Wang et al.,
2013, 2015a,b). For numerical data,Wang et al. detailed the intra-
coupled interaction to capture the correlations between a feature
and its own expanded powers and the inter-coupled interaction
to quantify the interactive relationships among each feature and
the expanded powers of the other features (Wang et al., 2013).
A few imaging studies investigated AD classification with the
coupling characteristics of the ROI-level features (Shi et al., 2014,
2020). Although such studies demonstrated high accuracy for
AD, MCI, and NC classifications with coupled feature analysis,
they still weakened or overlooked the coupled relationship at
network-level features. The ROI-level features within the same
network strongly interacted with each other (Brickman et al.,
2007). Different brain networks collaborated with each other and
carried explicit or implicit relationships (Betzel et al., 2014; Zuo
et al., 2017). Consequently, greater effort should be focused on
designing an appropriate coupled interaction model to integrate
the ROI-level and network-level coupling relationships.

To integrate the intrinsic coupling relationships of the ROI-
level and network-level features from structural MRI data, we
proposed a novel inter-coupled feature representation method
for the network-level features and built a two-level (the ROI
level and the network level) coupled feature integration model
for AD, MCI, and NC classification. For the intra-coupled
interactions about the network-level features, we performed
the ROI-level (intra- and inter-) coupled interaction within
each network by feature expansion and coupling learning. For
the inter-coupled interaction of the network-level features, we
introduced the measurement of the coupled relationships among
different networks via Canonical correlation analysis (CCA).
We compared the identification performances in AD, MCI, and
NC classification with different feature representation models.
We hypothesized that two-level (the ROI level and the network
level) coupled feature integration models would achieve better or
comparable AD classification performance.

MATERIALS AND METHODS

Participants
This study included 121 patients with AD and 120 NC
subjects, and 126 MCI converters (MCI-c) and 108 MCI non-
converters (MCI-nc), with baseline structural MRI data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The up-to-date information on ADNI’s
general inclusion criteria is described at www.adni-info.org.
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TABLE 1 | The characteristics of participants with AD, NC, MCI-c, and MCI-nc.

AD (n = 121) NC (n = 120) MCI-c (n =

126)

MCI-nc (n =

108)

Age (years) 74.87 ± 8.07 75.26 ± 6.52 73.47 ± 7.23 73.33 ± 7.73

Gender (M/F) 70/51 58/62 77/49 69/39

Education

(years)

15.72 ± 2.61 16.43 ± 2.74 16.09 ± 2.64 15.89 ± 2.63

MMSE score 21.71 ± 3.94 29.18 ± 0.98 26.88 ± 1.76 28.06 ± 1.75

APOE ε4

(NC/HT/HM)

41/80/0 79/33/8 37/65/24 67/35/6

ADAS-cog

score

21.52 ± 7.96 5.76 ± 3.02 13.60 ± 4.64 8.03 ± 3.47

Conversion

time (years)

– – 1.48 ± 0.69 –

AD, Alzheimer’s disease; NC, normal control; MCI, mild cognitive impairment; MCI-

c, MCI converter; MCI-nc, MCI non-converter; M/F, male/female; MMSE, Mini-Mental

State Examination; APOE, apolipoprotein E; NC, non-carrier; HT, heterozygote; HM,

homozygote; ADAS-cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale.

Briefly, the subjects were between 55 and 90 years of age.
General group inclusion/exclusion criteria were as follows: (1)
NC subjects: Mini-Mental State Examination (MMSE) scores
between 26 and 30, a Clinical Dementia Rating (CDR) score
of 0, non-depressed, non-MCI, and non-demented; (2) AD
subjects: MMSE scores <26, a CDR score of 0.5 or 1, and
met the National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related
Disorders Association (NINCDS/ADRDA) criteria for probable
AD diagnosis; and (3) MCI subjects who had a CDR score of 0.5,
MMSE scores between 21 and 30, and memory complaints and
abnormal memory function according to the Logical Memory II
subscale (Delayed Paragraph Recall but an absence of dementia.
The patients with MCI who converted to AD within 3-year
follow-up were classified into the MCI-c group; otherwise, they
were classified into theMCI-nc group.With respect to the gender
ratio and age, the AD group did not significantly differ from the
NC group (p = 0.14 in the gender ratio and p = 0.68 in age),
and theMCI-c did not significantly differ from theMCI-nc group
(p = 0.66 in the gender ratio and p = 0.20 in age). However,
the AD group exhibited significantly lower MMSE scores (p =

1.25 E − 42) than the NC group. Table 1 lists the demographics
of all these subjects.

Structural MRI Data Acquisition
Structural MRI images were acquired from multiple sites
and platforms with different acquisition parameters, which
can be found at http://adni.loni.usc.edu/methods/documents/
mriprotocols/. The T1-weighted magnetization prepared rapid
gradient echo (MPRAGE) images of all these subjects were
obtained from 1.5T or 3T scanners. For intensity non-
uniformity and gradient nonlinearity correction, the grad warp,
B1 calibration, and N3 correction were implemented on each
structural MRI image. The processed NIFTI images were
downloaded for this study. Details of the protocols of MRI image
correction can be found at http://adni.loni.usc.edu/methods/
mri-analysis/mri-pre-processing/.

Image Preprocessing
All of the spatial preprocessing of structural MRI images
was performed via Statistical Parametric Mapping (SPM8)
software (https://www.fil.ion.ucl.ac.uk/spm/software/spm8/) in
MATLAB. The Voxel-Based Morphometry (VBM) Toolbox
(http://dbm.neuro.uni-jena.de/wordpress/vbm/download/) was
used for the automated segmentation and normalization of
structural MRI images. First, each image was segmented into
three parts: GM, white matter, and cerebrospinal fluid (CSF)
(Rajapakse et al., 1997; Manjón et al., 2010). A de-noising
filter and a classical Markov random field (MRF) approach
were implemented to further improve the segmentation effect
(Ashburner, 2007). Then, GM images were normalized by the
Diffeomorphic Anatomical Registration using Exponential Lie
Algebra (DARTEL) protocol and transformed into the Montreal
Neurological Institute (MNI) space (Ashburner, 2007). Finally,
all the subjects’ GM images were smoothed with a kernel of 8-mm
full width at half maximum (FWHM).

Feature Extraction
In this study, the brain network-level features were extracted via
ICA using the Fusion ICA toolbox (FIT) (https://trendscenter.
org/software/fit/). The GM images of the AD and NC groups
were decomposed into a mixing coefficient matrix and a source
matrix with the Minimum Description Length (MDL) criteria
to estimate the optimal number of ICs. Each row of the
source matrix represents an IC, and each column of the mixing
coefficient matrix represents the contribution of each subject to
the corresponding IC. A two-sample t-test was performed on
the mixing coefficient of each IC, and then these IC maps with
significant between-group differences were converted to a z-score
brain map and reshaped to a binarization mask with a threshold
Z ≥ 3. For each IC, the main brain clusters were reported based
on the Anatomical Automatic Labeling (AAL) atlas. For each
subject in the AD, MCI-c, MCI-nc, and NC groups, only the top
3 ROIs ranked by the cluster size were selected as the ROI-level
features within each network. The average GMV of each ROI
falling into the brain network template was regarded as the ROI-
level original feature value. The average GMV of voxels within
each binarization network template was calculated as the value of
network-level original features.

Two-Level Coupled Feature Representation
We took the AD and NC groups as an example to illustrate
the implementation of coupled feature representation at the
ROI level and the network level. The two-level coupled feature
representations of the MCI-c andMCI-nc groups were generated
using the same method as the AD and NC groups.

Suppose that there are m1 samples in the AD group and
m2 samples in the NC group (M = m1 + m2), we assume that
there are N ROI-level original features and L brain network-level
original features for each subject. For the lth brain network, if
there are n ROI-level original features (n × L = N), and the
numerical value of the kth ROI-level features of the ith subject

is denoted as z
(l)
i,k
, then the ROI-level original feature vector can

be represented as z
(l)
i ∈ R

n =
[

z
(l)
i,1, z

(l)
i,2, · · · , z

(l)
i,n

]

. The whole

Frontiers in Neuroscience | www.frontiersin.org 3 June 2022 | Volume 16 | Article 902528

http://adni.loni.usc.edu/methods/documents/mriprotocols/
http://adni.loni.usc.edu/methods/documents/mriprotocols/
http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/
http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/
https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://dbm.neuro.uni-jena.de/wordpress/vbm/download/
https://trendscenter.org/software/fit/
https://trendscenter.org/software/fit/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Liu et al. Coupled-Feature Representation for AD Classification

ROI-level original feature vector for the ith subject is zi ∈ R
N =

[

z
(1)
i , z

(2)
i , · · · , z

(L)
i

]

. For the ith subject, the brain network-level

original feature vector is vi ∈ R
L =

[

vi,1, vi,2, · · · , vi,L
]

, and
the numerical value of the jth network-level features is denoted
as vi,j. The superscript ⊤ represents a transpose operator of a
vector or a matrix. In particular, we considered two levels of
feature representation with theOriginal FeaturesMatrix (OFM):
ZOFM = [z1, · · · , zM]⊤ ∈ R

M×N and VOFM = [v1, · · · , vM]⊤ ∈

R
M×L as follows:

ZEFM ∈ R
M × (n × E1) =
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Compared with the prior ROI-level coupled feature
representation method (Shi et al., 2014), the present study
proposed a novel two-level coupled feature representation
method that attempted to investigate the complex coupling
relationship of both the network-level feature matrix VOFM

and the ROI-level feature matrix ZOFM for the identification
of NC and AD using structural MRI data. We illustrated and
schematized our framework in Figure 1 compared with the
previous ROI-level coupled interaction representation method
(Shi et al., 2014).

The Network-Level Intra-coupled Interactions

We illustrated the method of performing the network-level intra-
coupled feature representation by the ROI-level feature matrix of
the lth brain network as an example.

Referring to previous study about the coupled
attribute analysis on numerical data (Wang et al.,
2013), the ROI-level feature vector of each brain

network, z
(l)
i , was mapped into the expanded feature

space, employing a matrix expansion with E1 power
as follows:

[
〈

z
(l)
i,1

〉1
,
〈

z
(l)
i,1

〉2
, · · · ,

〈

z
(l)
i,1
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z
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,
〈

z
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〉2
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· · · ,
〈

z
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z
(l)
i,n

〉1
,
〈

z
(l)
i,n

〉2
, · · · ,

〈

z
(l)
i,n

〉E1
]

,

and we can represent the ROI-level Extended Features Matrix
(EFM) of this brain network as follows:

Next, the Pearson’s correlation coefficient, R, between each pair
of the ROI-level features of ZEFM, was calculated as the network-
level intra-coupled weight matrix to reflect the ROI-level (intra-
and inter-) coupled interactions within each brain network from
both the linear and non-linear aspects. If the p-value of R was
>0.05, the correlation coefficient was revised to 0. In this way,
Rintra describes the correlation between the kth ROI-level original
feature and its own expanded powers, and Rinter describes the
pairwise correlation between the kth ROI-level feature and all the
expanded powers of the others, as follows:

Rintra
(

k
)

∈ R
E1×E1 =








γ11, γ 12 , · · · , γ 1E1
γ21, γ 22, · · · , γ 2E1
...

. . .
...

γE11 , γE12, · · · , γE1E1
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(

k
)
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...

· · · δ
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· · · δ
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,

where γpq is the revised Pearson’s correlation coefficient between

the pth and qth power of the kth ROI-level original feature,
〈

z
(l)
:,k

〉p

and
〈

z
(l)
:,k

〉q
, respectively, and δ

k,τ
pq is the revised Pearson’s

correlation coefficient between
〈

z
(l)
:,k

〉p
and

〈

z
(l)
:,τ

〉q
(k 6= τ ).

For the lth brain network from the ith subject, the network-

level intra-coupled feature vector can be represented as u
(l)
i ∈

R
(n×E1). The expanded vector of the kth ROI-level feature is

zintraEFM (i) =

[
〈

z
(l)
i,k

〉1

,
〈

z
(l)
i,k

〉2

, · · · ,
〈

z
(l)
i,k

〉E1
]

, and the expanded
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FIGURE 1 | A scheme of the proposed framework of two-level coupled interaction representation of neuroimaging features.

vector of other features is

zinterEFM (i) =
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z
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〈

z
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,
(

k 6= τ
)

.

Finally, the kth ROI-level coupled feature vector of the ith subject
for the lth brain network is denoted as follows:

u
(l)
i

(

k
)

= zintraEFM (i) ⊙ ω ⊗
[

Rintra
(

k
)]T

+zinterEFM (i) ⊙

n−1
︷ ︸︸ ︷

[ω,ω. . . . ,ω]⊗
[

Rinter
(

k
) ]T

,

where ω =
[
1
1! ,

1
2! , · · · ,

1
E1!

]

,

Then, the network-level intra-coupled feature matrix (CFM)
of the lth brain network for the ith subject is:

u
(l)
i =

[

u
(l)
i (1) , u

(l)
i (2) , . . . , u

(l)
i (n)

]

∈ R
(n×E1 ).

The network-level intra-coupled feature vector of the ith subject
is the concatenation of all networks’ coupled features vectors,
as follows:

Ui =
[

u
(1)
i , u

(2)
i . . . . . . , u

(L)
i

]

∈ R
(N×E1).

Note that the interactions on ROIs belonging to different
networks are not included.

The Network-Level Inter-Coupled Interactions

For the network-level inter-coupled representation, we can
represent the CFM as F ∈ R

M×L with the first E2
coefficients from CCA. In contrast to the network-level intra-
coupled feature representation used with the revised Pearson’s
correlation coefficient, we chose the CCA coefficients as the
coupling weights matrix for the network-level coupled feature
representation. CCA is a way of inferring information from
cross-covariance matrices of different network-level features.
The canonical correlation for the canonical variate pairs
from any two network-level ZOFM

(l) is as follows: wl1l2 =

RCCA

(

ZOFM
(l1),ZOFM

(l2)
)

, (l1 6= l2), which can represent the

inter-coupled interactions of different network-level features.
The top E2 canonical correlations are used for inter-coupled
interactions description rather than simply involving the whole

wl, revised as w̃l = R̃CCA

(

ZOFM
(l1),ZOFM

(l2)
)

. For the whole

brain, the network-level inter-coupled feature vector of the ith
subject is denoted as follows:

fi (w) = VEFM (Wl) ⊙

L−1
︷ ︸︸ ︷

[ω,ω. . . . ,ω]⊗ w̃l,

where ω =
[
1
1! ,

1
2! , · · · ,

1
E2!

]

and fi =

[fi (1) , fi (2) , · · · , fi (L)] ∈ R
L.
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To obtain the coupled feature representation at two levels,
the final CFMnetwork for the ith subject can be represented as
follows: [Ui, fi] ∈ R

(N×E1+L ).

Classification With Coupled Features
Boosting is a machine learning approach based on the idea
of improving the accuracy of a decision by combining many
relatively weak base learners (Schapire, 2013). The AdaBoost
algorithm works by updating parameters of feature distribution
in weak learners over training samples after each iteration
sequentially and adaptively (Freund and Schapire, 1997; Collins
et al., 2002). In this study, the two-level coupled feature matrix
was represented for the following classification analysis. We
chose an SVM classifier with a linear kernel function as the base
learner. In total, L + 1 base learners were trained, of which the L
base learners were trained for different brain network-level intra-
coupled features, and one was trained for the brain network-level
inter-coupled matrix.

We carried out separate analyses on two tasks: AD vs. NC
and MCI-c vs. MCI-nc classification. First, the boosting models
were constructed on the two-level Coupled Features Matrix,
denoted as CFMnetwork for AD vs. NC, and MCI-c vs. MCI-
nc classification. The 10-fold cross-validation was applied to
evaluate the performance, and the average results were reported.
In our two-level coupled feature representation and classification
scheme, several parameters need to be set, including E1 for
the parameter of network-level intra-coupled expansion and E2
for network-level inter-coupled coefficient selection. Here, the
optimal values of E1 and E2 were searched from a small set of
{2, 3, 4} and {1, 2, 3, 4, 5}, respectively.

We also constructed three other kinds of feature matrices
separately: (1) The ROI-level Original Features Matrix only,
denoted as OFMROI; (2) the ROI-level Coupled Features Matrix
across the whole brain without the network-level information,
denoted as CFMROI; and 3) the network-level Original Features
Matrix without coupling interaction information, denoted
as OFMnetwork . To validate the advantage of the two-level
coupled feature representation, we compared the classification
performances with these three different brain features.

RESULTS

The number of estimated ICs was 49 for the AD and NC groups
with the structural MRI data, and 21 ICs showed significant
between-group differences with Bonferroni correction. The
results of our two-level coupled feature representation and the
classification model showed that the best prediction accuracy is
90.44%, sensitivity is 88.5%, and specificity is 93.67% for AD
and NC groups and the best prediction accuracy is 87.72%,
sensitivity is 84.16%, and specificity is 91.64% for the MCI-c and
MCI-nc groups.

Based on the two-level coupled feature representation,
Tables 2, 3 show the classification results and give the detailed
results of the best parameters of E1 and E2 as references for future
studies.When E1 and E2 were set as 3 and 2, the two-level coupled
feature representation achieved the best performance for AD vs.

NC classification. The same parameter selection is applicable to
the MCI-c vs. MCI-nc distinction.

The results of the comparison for four different brain feature
representations for AD and NC classification are shown in
Table 2. The best classification accuracies for different features
are 69.21% for OFMROI, 73.51% for CFMROI, 71.29% for
OFMnetwork, and 90.44% for CFMnetwork. Table 3 shows the
results of the classification performances for the four kinds of
feature matrices for the MCI-c and MCI-nc classification. The
best classification accuracies for different features are 64.15%
for OFMROI, 75.10% for CFMROI, 68.62% for OFMnetwork, and
87.72% for CFMnetwork.

DISCUSSION

The current study proposed a novel network-level inter-coupled
representation approach, integrated the intrinsic coupled
relationships of both the ROI-level and the brain network-
level features, and then applied them to the classification of
subjects with AD, MCI-c, and MCI-nc from the normal elderly
individuals based on structural MRI data. By integrating the
intra- and inter-coupled interactions among the ROI-level and
network-level features, we obtained the innovative coupled
neuroimaging features, CFMnetwork and achieved the optimal
classification accuracy for both AD vs. NC and MCI-nc vs.
MCI-c classification compared with the OFMROI, CFMROI,
and OFMnetwork . These results indicated the effectiveness
of the coupled interaction representation among different
levels of neuroimaging features. Furthermore, the best-coupled
expansion parameter E1was 3 for the network-level intra-coupled
interaction, and the best-coupled coefficient selection E2 was 2
for the network-level inter-coupled interaction.

Two-Level Coupled Feature Representation
for AD and NC Classification
In the current study, we explored the coupled interaction
representation of two-level (the ROI -level and the network-
level) neuroimaging features on structural MRI data. For
AD and NC classification, the OFMnetwork representation
obtained slightly better performance (accuracy = 71.29%)
than the OFMROI representation (accuracy = 69.21%), and
the CFMnetwork representation achieved much greater accuracy
(accuracy = 90.44%) than the CFMROI representation (accuracy
= 73.51%). Overall, the network-level feature representations
showed preferable results to the ROI-level features, which
suggested the advantages of the network-level features in the AD
classification task. A number of studies built classificationmodels
to distinguish patients with AD from NCs based on the single-
level features from brain neuroimaging data, such as the ROI-
level features (Zhang et al., 2011; Zhan et al., 2015; Rondina
et al., 2018) or the network-level features (Yang et al., 2011).
For example, to identify the conversion from normal elderly
cognition to AD, Zhan et al. defined 90 ROIs and computed
the mean GMV as the ROI-level feature matrix and achieved an
accuracy of 83.83% (Zhan et al., 2015). The ROI-level features
computed by the ratio of increased GMVhave also been extracted
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TABLE 2 | Classification results for AD vs. NC with different kinds of feature representations.

Feature representation OFMROI OFMnetwork CFMROI CFMnetwork

Parameters setting E1 = 2 E1 = 3 E1 = 4 E1 = 2 E1 = 3 E1 = 4

E2 = 1 E2 = 2 E2 = 3 E2 = 4 E2 = 5 E2 = 1 E2 = 2 E2 = 3 E2 = 4 E2 = 5 E2 = 1 E2 = 2 E2 = 3 E2 = 4 E2 = 5

ACC (%) 69.21 71.29 73.51 71.77 68.27 71.2 76.84 81.72 76.09 70.85 85.02 90.44 83.3 77.94 72.47 77.47 87.32 81.13 75.19 70.2

SEN (%) 67.29 67.72 69.32 69.57 64.03 68.67 74.12 76.75 72.41 68.29 82.28 88.5 81.08 74.04 68.01 79.4 85.72 77.42 71.01 67.18

SPE (%) 71.60 73.20 75.42 74.02 70.57 73.9 79.61 83.57 80.62 73.16 87.75 93.67 86.1 80.07 74.51 81.13 90.04 84.91 77.38 72.55

OFMROI, the original ROI-level feature representation; OFMnetwork , the original network-level feature representation; CFMROI, the coupled ROI-level feature representation; CFMnetwork , the two-level feature representation; Acc, accuracy;

Sen, sensitivity; Spe, specificity. The values with the highest accuracy are highlighted in boldface. The shadow of gray color is used to visually differentiate columns of the table.

TABLE 3 | Classification results for MCI-c vs. MCI-nc with different kinds of feature representations.

Feature

representation

OFMROI OFMnetwork CFMROI CFMnetwork

Parameters

setting

E1 = 2 E1 = 3 E1 = 4 E1 = 2 E1 = 3 E1 = 4

E2 = 1 E2 = 2 E2 = 3 E2 = 4 E2 = 5 E2 = 1 E2 = 2 E2 = 3 E2 = 4 E2 = 5 E2 = 1 E2 = 2 E2 = 3 E2 = 4 E2 = 5

ACC (%) 64.15 68.62 75.10 73.81 71.31 70.24 72.38 78.92 76.07 73.25 80.75 87.72 82.31 74.59 71.76 71.22 78.63 79.41 75.71 70.65

SEN (%) 62.30 66.44 72.23 70.54 67.90 66.21 69.70 75.92 73.82 70.61 78.42 84.16 78.73 72.16 69.02 68.78 76.23 77.20 71.02 68.99

SPE (%) 66.74 71.46 79.42 76.42 73.54 72.44 76.07 81.13 79.16 77.25 84.57 91.64 84.79 79.85 75.59 75.28 81.78 82.18 78.29 73.06

OFMROI, the original ROI-level feature representation; OFMnetwork , the original network-level feature representation; CFMROI, the coupled ROI-level feature representation; CFMnetwork , the two-level feature representation; Acc, accuracy;

Sen, sensitivity; Spe, specificity. The values with the highest accuracy are highlighted in boldface. The shadow of gray color is used to visually differentiate columns of the table.
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from structural MRI data, and they obtained a classification
accuracy of 76.11% between AD and NC (Rondina et al., 2018).
Different from them, Wang et al. considered the corresponding
coefficients of ICs decomposed using the ICA algorithm as the
network-level features and got 80.7% accuracy with the SVM
classifier for the diagnosis of individuals with AD and HC
(Yang et al., 2011). In this study, we not only extracted the
ROI-level features but also obtained the network-level features
and integrated them. Although the measurements or definitions
of original features in our study were different from those in
the prior studies, our study attempted to integrate hierarchical
features from sMRI for the classification of AD and NC.

Compared with the original features (OFMROI and
OFMnetwork), the coupled features (CFMROI and CFMnetwork)
helped improve the classification results in this study. Among
the four kinds of feature representations, the CFMnetwork

obtained the best classification performance of AD and NC
(accuracy = 90.44%), which demonstrated the strengths of
the integration of multilevel (the ROI level and the network
level) coupled interaction representation of hierarchical features.
It has been demonstrated that there were strong couplings,
including the relations that exist explicitly or implicitly between
source and destination entities, among values, attributes, and
objects for numerical data (Wang et al., 2013; Cao, 2015).
Wang et al. introduced the framework to quantify and integrate
the intra-coupled and inter-coupled interactions with the
original information from numerical data (Wang et al., 2013).
Many studies indicated that the original neuroimaging features
exhibited complex regional dependencies, and the features
in different brain networks changed diversely along with the
progression of MCI and AD (Liu et al., 2017c; Zheng et al.,
2019; Lee et al., 2020). Inspired by these pieces of research,
we quantitatively measured the network-level intra-coupled
relationships and proposed the network-level inter-coupled
interaction feature representation. Recently, several studies
focusing on the coupled interactions for ROI-level features have
been reported, in which they analyzed the ROI-level coupled
relationships and appealed to the coupling analysis for numerical
data (Shi et al., 2014, 2020). By hypothesizing that the ROI-level
features (the average GMV) were related to each other in some
ways, Shi et al. introduced the coupled interaction representation
for the ROI-level features and adopted the coupled boosting
algorithm to analyze the pairwise coupled-diversity correlation
between modalities with the best performance of 86.% for AD
and NC classification (Shi et al., 2014). Our model achieved
higher accuracy of 90.44%, which illustrated the advantages of
our two-level coupled interactions representation.

Two-Level Coupled Interaction
Representation for MCI-C and MCI-Nc
Classification
MCI is an intermediate stage in the trajectory from normal
cognition to AD and is important for the early diagnosis of
AD (Ahmed et al., 2017; Arbabshirani et al., 2017; Thung et al.,
2018). To classify MCI-c and MCI-nc, we integrated the intra-
coupled and inter-coupled interactions among the ROI-level

and network-level features with the best accuracy of 87.72%
compared with other feature representations. Considering the
GM density from structural MRI data as the voxel-level features,
Wang et al. obtained an accuracy of 69.77% for MCI-c vs. MCI-
nc based on informed Partial Least Square models (Wang et al.,
2016). Based on 38 subcortical volumes as ROI-level features,
Aleksandra et al. classified MCI vs. NC with the Random Forest
model (Lebedeva et al., 2017). Apart from the slight differences in
classifiers, a common practice in former studies was the straight
concatenation of all ROI-level features as independent variables
into the input feature matrix. However, these schemes lost sight
of the complicated dependencies among ROI-level features (Guo
et al., 2015) and the diversified and heterogenous changes for
different structural networks (Sui et al., 2014; Liu et al., 2017b).
Compared with the abovementioned studies, we believe that
the proposed two-level coupled interaction integration method
which was validated could be more powerful for the diagnosis of
MCI conversion to AD with promising results.

Methodological Considerations
ICA is a popular data-driven method to study brain functional
networks (Damoiseaux et al., 2012) and structural networks (Guo
et al., 2015; Liu et al., 2017c). The network-level features extracted
by ICA could effectively reduce the data dimensions and depend
entirely on brain neuroimaging data themselves without prior
knowledge. It has been confirmed that ROIs in the same brain
network carried similar and interregional covariate information
and exhibited more complicated regional dependencies than
those in different brain networks (Liu et al., 2017a; Filippi
et al., 2020; Wang et al., 2022). Thus, we performed ICA to
identify brain structural networks from AD and NC groups and
defined the representation of the network-level and ROI-level
neuroimaging features.

Then, we designed the two-level coupled interaction
integration of hierarchical features to evaluate the network-
level intra-coupled and inter-coupled effects in AD and MCI
classification. More specifically, we innovatively considered both
the network-level intra-coupled interaction for every network
individually, quantified by the intra-coupled and inter-coupled
interactions among the ROI-level features within this network
but not ROIs across the whole brain; and the network-level
inter-coupled interaction among different network-level features
was captured by the coupled coefficients between the ROI-level
feature set of this network and the ROI-level features set of
others. Besides, CCA can maximize the correlation between
a linear combination of the variables in two datasets and has
been applied to identify the relationship between brain networks
(Sui et al., 2012; Ouyang et al., 2015; Taquet et al., 2021). In
this study, CCA was performed on the ROI-level feature sets
of any two brain networks and obtained the inter-coupled
coefficients of network-level features to avoid reusing the
ROI-level features information for network-level coupled
interaction representation.

In the current study, E1was denoted as the maximal power
for the expansion of the ROI-level features in the network-level
intra-coupled interaction representation and E2 as the number of
the CCA coefficients selected to express the information for the

Frontiers in Neuroscience | www.frontiersin.org 8 June 2022 | Volume 16 | Article 902528

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Liu et al. Coupled-Feature Representation for AD Classification

network-level inter-coupled interaction representation. In this
way, we integrated the two-level coupled interactions, including
both the intra-coupled and inter-coupled interactions for both
the network-level and the ROI-level features. We set the range of
E1, from 2 to 4, and E2, from 1 to 5, respectively. When the value
of E1 increases, the value of E1! will grow correspondingly so will
E2!. The coupled interactions for feature values are quantified

by a Taylor-like expansion, ω =
[
1
1! ,

1
2! , · · · ,

1
E1!

]

. Along with

the increase of E1 and E2, the reciprocals,
1

E1!
and 1

E2!
, decreased

accordingly and caused the corresponding weight value of the
expanded items to be too small to capture the interactions among
different features. Furthermore, the greater E1 or E2 may have
less significant effects on the classification performance. Then,
the appropriate E1 or E2 helps to fully exploit the information
of coupled interactions within hierarchical features. As our
results indicated, the classification performance changed with
the variation of the two coupled interaction parameters. When
E1 = 3 and E2 = 2, the best result was obtained in this
tudy, which implied that the information of coupled interactions
within hierarchical features has been fully exploited. When E1 =
1, the number of the ROI-level features was still invariant, which
meant that the ROI-level coupled feature matrix was the original
ROI-level feature matrix without coupled interaction analysis.
When E1 increased, the number of ROI features increased with
E1-fold accordingly. When E1 was equal to 3, each ROI-level
feature was expanded three times in numerical space than the
original feature. The inter-coupled interaction parameter for
brain network-level features indicated that the first E2 pairs of
canonical variables via CCA were maximally adequate to express
the information among brain network-level features. When E2
was equal to 2, the top two coefficients of CCA were selected for
the network-level inter-coupled interaction representation. With
regard to the ROI-level and network-level coupled interactions of
parameters setting, we recommend E1 = 3 and E2 = 2 for similar
analysis in the future.

Limitations and Future Work
The current study focused on constructing a novel coupled
relationship representation to combine the ROI-level and
network-level features, and then, we only adopted the numerical
features from the structural MRI data. As different neuroimaging
modality features provide complementary information, the
coupled interactions of different modalities are heterogeneous
(Zhang et al., 2011; Rathore et al., 2017). The coupled
interactions based on multi-modality features are a novel issue
that needs more exploration. The representation and integration
of the intra-coupled interaction and inter-coupled interaction at
multilevels, including the modality level, the network level, and
the ROI level, will be investigated in future studies.

CONCLUSION

In the current study, we proposed a network-level inter-coupled
interaction representation approach with the independent
components from ICA as the network-level features and the CCA
weights for network-level inter-coupled characteristics. Then, we

integrated the ROI-level and network-level coupled interactions
based on structural MRI data to classify subjects with AD, MCI-
c, MCI-nc, and NC. Our results demonstrated that the two-
level coupled interaction feature representation outperformed
the original feature representation and the single-level coupled
representation and provided a perspective based on the coupled
interaction integration of hierarchical neuroimaging features.
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